

Psephology - it’s election night

	Getting started
	Docker hub

	Installation from source

	Getting data in

	Building the documentation

	Web UI

	Command line
	Database migration

	Importing results

	Programmers’ reference
	Application object creation

	Importing/exporting data

	Data model

Getting started

This section will get you up and running with Psephology. It is assumed that you
have a working docker [https://www.docker.com/] installed. It’s preferable to
have docker-machine [https://docs.docker.com/machine/] installed as well
because it’s awesome.

Docker hub

Psephology can be got up and running without needing to clone the source
repository since there is an image [https://hub.docker.com/r/rjw57/psephology/] on Docker hub which is built
automatically on each commit to master.

The image is configured to use the SQLite database internally and so should be
considered an “ephemeral” install in that the database state is not persisted.
In production, a further Dockerfile would be used which builds on this image and
adds configuration for a persistent database.

Since docker will automatically pull images not available locally, we can fetch
and run the Psephology server in one line:

$ docker run -it --rm --name psephology-server \
 -p 5000:5000 rjw57/psephology

Although the container is now running, trying to visit the site will result in
an error. This is because we’ve not yet migrated the database to the latest
version. Database migration is the process of updating the schema to match the
latest version. It’s good practice to have the migration be under the control of
a separate command so that potentially database changing operations are
explicit.

The database migration takes one command. In a separate terminal,

$ docker exec psephology-server flask db upgrade

Now you should be able to navigate to http://localhost:5000/ and see the app in
all of its glory. If you’re using docker-machine, you’ll need to use the
appropriate IP for the virtual machine:

$ xdg-open http://$(docker-machine ip):5000 # Linux-y machines
$ open http://$(docker-machine ip):5000 # Mac OS X

Installation from source

Firstly, clone the Psephology application from GitHub:

$ git clone https://github.com/rjw57/psephology
$ cd psephology

One can now build the Docker container directly from the repo:

$ docker build -t rjw57/psephology .

As part of the container build, the test suite is run to ensure that the current
version is runnable inside the container environment. Once the container is
built, you can run the server using docker run as outlined above.

Alternatively, you can opt for a local install via pip. It is good practice
to setup a virtualenv first:

$ virtualenv -p $(which python3) venv
$. ./venv/bin/activate
$ pip install -e .

Once installed, the test suite can be run via setup.py:

$ python setup.py test

Code coverage can be calculated using the coverage utility:

$ pip install coverage
$ coverage run setup.py test && coverage report

Migrate the initial database and start the server:

$ export PSEPHOLOGY_CONFIG=$PWD/config.py
$ export FLASK_APP=psephology.autoapp
$ export FLASK_DEBUG=1
$ flask db upgrade
$ flask run

When installed from source, the server is configured in “debug” mode with the
Flask debug toolbar inserted into the UI. You should be able to navigate to
http://localhost:5000/ and use the webapp.

Getting data in

We can look around the site but at the moment there isn’t much to see since
there’s no data in the database. The Psephology repo comes with the results of
the General Election 2017 in the correct results format. You can use the
excellent httpie [https://github.com/jakubroztocil/httpie] tool to post the
results:

$ pip install httpie # if you don't have it
$ cat test-data/ge2017_results.txt | \
 http POST http://$(docker-machine ip):5000/api/import
{
 "diagnostics": [],
 "line_count": 650
}

Note the diagnostics field which is returned. If we add some bad results
lines then human-readable errors are returned:

$ cat test-data/noisy_results.txt | \
 http POST http://$(docker-machine ip):5000/api/import
{
 "diagnostics": [
 {
 "line": "Strangford, 507, X, 607, G",
 "line_number": 1,
 "message": "Party code \"X\" is unknown"
 },
 {
 "line": "",
 "line_number": 5,
 "message": "Constituency name cannot be empty"
 },
 {
 "line": "Oxford East, 11834, C, 35118, L, 4904, LD, 1785, G, 10, LD",
 "line_number": 6,
 "message": "Multiple results for one party"
 }
],
 "line_count": 7
}

We can use the API to get a table listing how many seats each party currently
has:

$ http http://$(docker-machine ip):5000/api/party_totals
{
 "party_totals": {
 "C": {
 "constituency_count": 321,
 "name": "Conservative Party"
 },
 "G": {
 "constituency_count": 8,
 "name": "Green Party"
 },
 "L": {
 "constituency_count": 263,
 "name": "Labour Party"
 },
 "LD": {
 "constituency_count": 13,
 "name": "Liberal Democrats"
 },
 "SNP": {
 "constituency_count": 35,
 "name": "SNP"
 }
 }
}

Similarly we can retrieve the winners of each constituency via the API. Results
are returned for each constituency even when there is currently no winner. (For
example if a blank results line has been given.)

$ http http://$(docker-machine ip):5000/api/constituencies
{
 "constituencies": [
 {
 "maximum_votes": 22662,
 "name": "Aberavon",
 "party": {
 "id": "L",
 "name": "Labour Party"
 },
 "share_percentage": 74.28459042187039,
 "total_votes": 30507
 },

 //

 {
 "maximum_votes": null,
 "name": "Belfast West",
 "party": null,
 "share_percentage": null,
 "total_votes": null
 },

 //

 {
 "maximum_votes": 34594,
 "name": "York Central",
 "party": {
 "id": "L",
 "name": "Labour Party"
 },
 "share_percentage": 65.16350210970464,
 "total_votes": 53088
 },
 {
 "maximum_votes": 29356,
 "name": "York Outer",
 "party": {
 "id": "C",
 "name": "Conservative Party"
 },
 "share_percentage": 51.118811708778104,
 "total_votes": 57427
 }
]
}

It is also possible to update a constituency result via the API. For example,
let’s allow the Liberal Democrats to win Cambridge:

$ echo Cambridge, 10, C, 10, L, 1000, LD |
 http POST http://$(docker-machine ip):5000/api/import
{
 "diagnostics": [],
 "line_count": 1
}

Looking at the party totals, we see that Labour have lost one seat and the
Liberal Democrats have gained one:

$ http http://$(docker-machine ip):5000/api/party_totals
{
 "party_totals": {
 "C": {
 "constituency_count": 321,
 "name": "Conservative Party"
 },
 "G": {
 "constituency_count": 8,
 "name": "Green Party"
 },
 "L": {
 "constituency_count": 262,
 "name": "Labour Party"
 },
 "LD": {
 "constituency_count": 14,
 "name": "Liberal Democrats"
 },
 "SNP": {
 "constituency_count": 35,
 "name": "SNP"
 }
 }
}

Building the documentation

The documentation is built with the sphinx tool and has additional
requirements. You can install the requirements and build the documentation via:

$ pip install -r doc/requirements.txt
$ make -C doc singlehtml
$ xdg-open doc/_build/singlehtml/index.html # Linux-y
$ open doc/_build/singlehtml/index.html # OS X

Web UI

The web UI is available at http://localhost:5000/ (or at the appropriate IP if
using docker-machine). The following pages are available:

	A summary giving total number of seats for each party

	A list of winners for each constituency

	An event log showing any errors/warnings from importing results files

	A page which lets the user upload a new results file

	A page which provides the current results as a plain text file in the result
line format

Command line

The Psephology application has a command-line interface which can be run via the
flask tool. Perhaps the most useful command is flask run which will
launch a server hosting the application.

Database migration

Psephology uses Flask-Migrate and alembic to manage the database migrations. On
first run or when upgrading the software, remember to run flask db upgrade
to migrate the database to the newest version.

Importing results

Results may be imported from the command line via flask psephology
importresults. See flask psephology importresults --help for more
information.

Programmers’ reference

Application object creation

The app module provides support for creating Flask Application
objects.

	
psephology.app.create_app(config_filename=None, config_object=None)

	Create a new application object. The database and CLI are automatically
wired up. If config_filename or config_object are not None they
are passed to app.config.from_pyfile() and
app.config.from_object() respectively.

Returns the newly created application object.

The autoapp module may be imported to automatically create an
application from the configuration specified in the PSEPHOLOGY_CONFIG
environment variable. This is useful, for example, when using the gunicorn [http://gunicorn.org/]
web server where one can launch the application via:

$ gunicorn psephology.autoapp:app

Importing/exporting data

The io module provides functions which can be used to parse external
data formats used by Psephology.

	
psephology.io.parse_result_line(line)

	Take a line consisting of a constituency name and vote count, party id
pairs all separated by commas and return the constituency name and a list of
results as a pair. The results list consists of vote-count party name pairs.

To handle constituencies whose names include a comma, the parse considers
count, party pairs from the right and stops when it reaches a vote count
which is not an integer.

Data model

The model module defines the basic data model used by Psephology
along with some utility functions which can be used to mutate it. The
query module contains some potted queries for this data model which
provide useful summaries.

None of the functions in model will run session.commit(). If you
mutate the database inside a UI/API implementation, you’ll need to remember to
commit the result. This is to guard against partial updates to the DB is a
UI/API method fails.

	
class psephology.model.Party(**kwargs)

	A political party. Each party is primarily keyed by its abbreviation. In
addition, the name of a political party should be unique.

	
id

	String primary key. This is the party “code” such as “C” or “LD”.

	
name

	Human-readable “long” name for the party.

	
votings

	Sequence of Voting instances associated with this party.

	
class psephology.model.Constituency(**kwargs)

	A constituency. Essentially this is a mapping between a numeric id and a
human-friendly name.

	
id

	Integer primary key.

	
name

	Human-readable name. Must be unique.

	
votings

	Sequence of Voting instances associated with this
constituency.

	
class psephology.model.Voting(**kwargs)

	A record of a number of votes cast for a particular party within a
constituency.

	
id

	Integer primary key.

	
count

	Number of votes cast.

	
constituency_id

	Integer primary key id of associated constituency.

	
constituency

	Constituency instance for associated constituency.

	
party_id

	String primary key id of associated party.

	
party

	Party instance for associated party.

	
class psephology.model.LogEntry(**kwargs)

	A record of some log-worthy text.

	
id

	Integer primary key.

	
created_at

	Date and time at which this entry was created in UTC. When creating an
instance, this defaults to the current date and time.

	
message

	Textual content of log.

	
psephology.model.log(message)

	Convenience function to log a message to the database.

	
psephology.model.add_constituency_result_line(line, valid_codes=None, session=None)

	Add in a result from a constituency. Any previous result is removed. If
there is an error, ValueError is raised with an informative message.

Session is the database session to use. If None, the global db.session is
used.

If valid_codes is non-None, it is a set containing the party codes which are
allowed in this database. If None, this set is queried from the database.

The session is not commit()-ed.

	
class psephology.model.Diagnostic(line, message, line_number)

	A diagnostic from parsing a file. Records the original line, a
human-readable message and a 1-based line number.

	
psephology.model.import_results(results_file, valid_codes=None, session=None)

	Take a iterable which yields result lines and add them to the database.
If session is None, the global db.session is used.

If valid_codes is non-None, it is a set containing the party codes which are
allowed in this database. If None, this set is queried from the database.

Note

This can take a relatively long time when adding several hundred
results. Should this become a bottleneck, there are some optimisation
opportunities.

The query module provides some ready-to-use queries which can be run
against the database.

	
psephology.query.constituency_winners()

	A query which returns the Constituency, Voting, winning vote count and
total vote count for each constituency. If there was no winner in the
constituency, then the Voting, winning vote count and total vote count is
None.

The maximum vote count for a constituency is labelled ‘max_vote_count’ and
the total vote count is labelled ‘total_vote_count’.

If you intend to get related objects from the Voting, make sure to add an
appropriate joinedload() to the options.

E.g.:

q = constituency_winners().options(
 joinedload(Voting.party)
)

	
psephology.query.party_totals()

	A query which returns a Party and a constituency count, labelled
‘constituency_count’ which gives the number of constituencies that party has
won.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 psephology	

 	
 	
 psephology.app	

 	
 	
 psephology.autoapp	

 	
 	
 psephology.io	

 	
 	
 psephology.model	

 	
 	
 psephology.query	

Index

 A
 | C
 | D
 | I
 | L
 | M
 | N
 | P
 | V

A

 	
 	add_constituency_result_line() (in module psephology.model)

C

 	
 	Constituency (class in psephology.model)

 	constituency (psephology.model.Voting attribute)

 	constituency_id (psephology.model.Voting attribute)

 	
 	constituency_winners() (in module psephology.query)

 	count (psephology.model.Voting attribute)

 	create_app() (in module psephology.app)

 	created_at (psephology.model.LogEntry attribute)

D

 	
 	Diagnostic (class in psephology.model)

I

 	
 	id (psephology.model.Constituency attribute)

 	(psephology.model.LogEntry attribute)

 	(psephology.model.Party attribute)

 	(psephology.model.Voting attribute)

 	
 	import_results() (in module psephology.model)

L

 	
 	log() (in module psephology.model)

 	
 	LogEntry (class in psephology.model)

M

 	
 	message (psephology.model.LogEntry attribute)

N

 	
 	name (psephology.model.Constituency attribute)

 	(psephology.model.Party attribute)

P

 	
 	parse_result_line() (in module psephology.io)

 	Party (class in psephology.model)

 	party (psephology.model.Voting attribute)

 	party_id (psephology.model.Voting attribute)

 	party_totals() (in module psephology.query)

 	
 	psephology.app (module)

 	psephology.autoapp (module)

 	psephology.io (module)

 	psephology.model (module)

 	psephology.query (module)

V

 	
 	Voting (class in psephology.model)

 	
 	votings (psephology.model.Constituency attribute)

 	(psephology.model.Party attribute)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Psephology - it's election night

 		Getting started

 		Docker hub

 		Installation from source

 		Getting data in

 		Building the documentation

 		Web UI

 		Command line

 		Database migration

 		Importing results

 		Programmers' reference

 		Application object creation

 		Importing/exporting data

 		Data model

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

