
psephology Documentation
Release

Rich Wareham

Aug 24, 2017

Contents

1 Getting started 1
1.1 Docker hub . 1
1.2 Installation from source . 2
1.3 Getting data in . 2
1.4 Building the documentation . 5

2 Web UI 7

3 Command line 9
3.1 Database migration . 9
3.2 Importing results . 9

4 Programmers’ reference 11
4.1 Application object creation . 11
4.2 Importing/exporting data . 11
4.3 Data model . 12

Python Module Index 15

i

ii

CHAPTER 1

Getting started

This section will get you up and running with Psephology. It is assumed that you have a working docker installed. It’s
preferable to have docker-machine installed as well because it’s awesome.

Docker hub

Psephology can be got up and running without needing to clone the source repository since there is an image on
Docker hub which is built automatically on each commit to master.

The image is configured to use the SQLite database internally and so should be considered an “ephemeral” install in
that the database state is not persisted. In production, a further Dockerfile would be used which builds on this image
and adds configuration for a persistent database.

Since docker will automatically pull images not available locally, we can fetch and run the Psephology server in one
line:

$ docker run -it --rm --name psephology-server \
-p 5000:5000 rjw57/psephology

Although the container is now running, trying to visit the site will result in an error. This is because we’ve not yet
migrated the database to the latest version. Database migration is the process of updating the schema to match the
latest version. It’s good practice to have the migration be under the control of a separate command so that potentially
database changing operations are explicit.

The database migration takes one command. In a separate terminal,

$ docker exec psephology-server flask db upgrade

Now you should be able to navigate to http://localhost:5000/ and see the app in all of its glory. If you’re using
docker-machine, you’ll need to use the appropriate IP for the virtual machine:

$ xdg-open http://$(docker-machine ip):5000 # Linux-y machines
$ open http://$(docker-machine ip):5000 # Mac OS X

1

https://www.docker.com/
https://docs.docker.com/machine/
https://hub.docker.com/r/rjw57/psephology/
http://localhost:5000/

psephology Documentation, Release

Installation from source

Firstly, clone the Psephology application from GitHub:

$ git clone https://github.com/rjw57/psephology
$ cd psephology

One can now build the Docker container directly from the repo:

$ docker build -t rjw57/psephology .

As part of the container build, the test suite is run to ensure that the current version is runnable inside the container
environment. Once the container is built, you can run the server using docker run as outlined above.

Alternatively, you can opt for a local install via pip. It is good practice to setup a virtualenv first:

$ virtualenv -p $(which python3) venv
$. ./venv/bin/activate
$ pip install -e .

Once installed, the test suite can be run via setup.py:

$ python setup.py test

Code coverage can be calculated using the coverage utility:

$ pip install coverage
$ coverage run setup.py test && coverage report

Migrate the initial database and start the server:

$ export PSEPHOLOGY_CONFIG=$PWD/config.py
$ export FLASK_APP=psephology.autoapp
$ export FLASK_DEBUG=1
$ flask db upgrade
$ flask run

When installed from source, the server is configured in “debug” mode with the Flask debug toolbar inserted into the
UI. You should be able to navigate to http://localhost:5000/ and use the webapp.

Getting data in

We can look around the site but at the moment there isn’t much to see since there’s no data in the database. The
Psephology repo comes with the results of the General Election 2017 in the correct results format. You can use the
excellent httpie tool to post the results:

$ pip install httpie # if you don't have it
$ cat test-data/ge2017_results.txt | \

http POST http://$(docker-machine ip):5000/api/import
{

"diagnostics": [],
"line_count": 650

}

2 Chapter 1. Getting started

http://localhost:5000/
https://github.com/jakubroztocil/httpie

psephology Documentation, Release

Note the diagnostics field which is returned. If we add some bad results lines then human-readable errors are
returned:

$ cat test-data/noisy_results.txt | \
http POST http://$(docker-machine ip):5000/api/import

{
"diagnostics": [
{

"line": "Strangford, 507, X, 607, G",
"line_number": 1,
"message": "Party code \"X\" is unknown"

},
{

"line": "",
"line_number": 5,
"message": "Constituency name cannot be empty"

},
{

"line": "Oxford East, 11834, C, 35118, L, 4904, LD, 1785, G, 10, LD",
"line_number": 6,
"message": "Multiple results for one party"

}
],
"line_count": 7

}

We can use the API to get a table listing how many seats each party currently has:

$ http http://$(docker-machine ip):5000/api/party_totals
{

"party_totals": {
"C": {

"constituency_count": 321,
"name": "Conservative Party"

},
"G": {

"constituency_count": 8,
"name": "Green Party"

},
"L": {

"constituency_count": 263,
"name": "Labour Party"

},
"LD": {

"constituency_count": 13,
"name": "Liberal Democrats"

},
"SNP": {

"constituency_count": 35,
"name": "SNP"

}
}

}

Similarly we can retrieve the winners of each constituency via the API. Results are returned for each constituency even
when there is currently no winner. (For example if a blank results line has been given.)

1.3. Getting data in 3

psephology Documentation, Release

$ http http://$(docker-machine ip):5000/api/constituencies
{

"constituencies": [
{

"maximum_votes": 22662,
"name": "Aberavon",
"party": {

"id": "L",
"name": "Labour Party"

},
"share_percentage": 74.28459042187039,
"total_votes": 30507

},

//

{
"maximum_votes": null,
"name": "Belfast West",
"party": null,
"share_percentage": null,
"total_votes": null

},

//

{
"maximum_votes": 34594,
"name": "York Central",
"party": {

"id": "L",
"name": "Labour Party"

},
"share_percentage": 65.16350210970464,
"total_votes": 53088

},
{

"maximum_votes": 29356,
"name": "York Outer",
"party": {

"id": "C",
"name": "Conservative Party"

},
"share_percentage": 51.118811708778104,
"total_votes": 57427

}
]

}

It is also possible to update a constituency result via the API. For example, let’s allow the Liberal Democrats to win
Cambridge:

$ echo Cambridge, 10, C, 10, L, 1000, LD |
http POST http://$(docker-machine ip):5000/api/import

{
"diagnostics": [],
"line_count": 1

}

4 Chapter 1. Getting started

psephology Documentation, Release

Looking at the party totals, we see that Labour have lost one seat and the Liberal Democrats have gained one:

$ http http://$(docker-machine ip):5000/api/party_totals
{

"party_totals": {
"C": {

"constituency_count": 321,
"name": "Conservative Party"

},
"G": {

"constituency_count": 8,
"name": "Green Party"

},
"L": {

"constituency_count": 262,
"name": "Labour Party"

},
"LD": {

"constituency_count": 14,
"name": "Liberal Democrats"

},
"SNP": {

"constituency_count": 35,
"name": "SNP"

}
}

}

Building the documentation

The documentation is built with the sphinx tool and has additional requirements. You can install the requirements
and build the documentation via:

$ pip install -r doc/requirements.txt
$ make -C doc singlehtml
$ xdg-open doc/_build/singlehtml/index.html # Linux-y
$ open doc/_build/singlehtml/index.html # OS X

1.4. Building the documentation 5

psephology Documentation, Release

6 Chapter 1. Getting started

CHAPTER 2

Web UI

The web UI is available at http://localhost:5000/ (or at the appropriate IP if using docker-machine). The following
pages are available:

• A summary giving total number of seats for each party

• A list of winners for each constituency

• An event log showing any errors/warnings from importing results files

• A page which lets the user upload a new results file

• A page which provides the current results as a plain text file in the result line format

7

http://localhost:5000/

psephology Documentation, Release

8 Chapter 2. Web UI

CHAPTER 3

Command line

The Psephology application has a command-line interface which can be run via the flask tool. Perhaps the most
useful command is flask run which will launch a server hosting the application.

Database migration

Psephology uses Flask-Migrate and alembic to manage the database migrations. On first run or when upgrading the
software, remember to run flask db upgrade to migrate the database to the newest version.

Importing results

Results may be imported from the command line via flask psephology importresults. See flask
psephology importresults --help for more information.

9

psephology Documentation, Release

10 Chapter 3. Command line

CHAPTER 4

Programmers’ reference

Application object creation

The app module provides support for creating Flask Application objects.

psephology.app.create_app(config_filename=None, config_object=None)
Create a new application object. The database and CLI are automatically wired up. If config_filename or
config_object are not None they are passed to app.config.from_pyfile() and app.config.
from_object() respectively.

Returns the newly created application object.

The autoapp module may be imported to automatically create an application from the configuration specified in
the PSEPHOLOGY_CONFIG environment variable. This is useful, for example, when using the gunicorn web server
where one can launch the application via:

$ gunicorn psephology.autoapp:app

Importing/exporting data

The io module provides functions which can be used to parse external data formats used by Psephology.

psephology.io.parse_result_line(line)
Take a line consisting of a constituency name and vote count, party id pairs all separated by commas and return
the constituency name and a list of results as a pair. The results list consists of vote-count party name pairs.

To handle constituencies whose names include a comma, the parse considers count, party pairs from the right
and stops when it reaches a vote count which is not an integer.

11

http://gunicorn.org/

psephology Documentation, Release

Data model

The model module defines the basic data model used by Psephology along with some utility functions which can
be used to mutate it. The query module contains some potted queries for this data model which provide useful
summaries.

None of the functions in model will run session.commit(). If you mutate the database inside a UI/API imple-
mentation, you’ll need to remember to commit the result. This is to guard against partial updates to the DB is a UI/API
method fails.

class psephology.model.Party(**kwargs)
A political party. Each party is primarily keyed by its abbreviation. In addition, the name of a political party
should be unique.

id
String primary key. This is the party “code” such as “C” or “LD”.

name
Human-readable “long” name for the party.

votings
Sequence of Voting instances associated with this party.

class psephology.model.Constituency(**kwargs)
A constituency. Essentially this is a mapping between a numeric id and a human-friendly name.

id
Integer primary key.

name
Human-readable name. Must be unique.

votings
Sequence of Voting instances associated with this constituency.

class psephology.model.Voting(**kwargs)
A record of a number of votes cast for a particular party within a constituency.

id
Integer primary key.

count
Number of votes cast.

constituency_id
Integer primary key id of associated constituency.

constituency
Constituency instance for associated constituency.

party_id
String primary key id of associated party.

party
Party instance for associated party.

class psephology.model.LogEntry(**kwargs)
A record of some log-worthy text.

id
Integer primary key.

12 Chapter 4. Programmers’ reference

psephology Documentation, Release

created_at
Date and time at which this entry was created in UTC. When creating an instance, this defaults to the
current date and time.

message
Textual content of log.

psephology.model.log(message)
Convenience function to log a message to the database.

psephology.model.add_constituency_result_line(line, valid_codes=None, session=None)
Add in a result from a constituency. Any previous result is removed. If there is an error, ValueError is raised
with an informative message.

Session is the database session to use. If None, the global db.session is used.

If valid_codes is non-None, it is a set containing the party codes which are allowed in this database. If None,
this set is queried from the database.

The session is not commit()-ed.

class psephology.model.Diagnostic(line, message, line_number)
A diagnostic from parsing a file. Records the original line, a human-readable message and a 1-based line number.

psephology.model.import_results(results_file, valid_codes=None, session=None)
Take a iterable which yields result lines and add them to the database. If session is None, the global db.session
is used.

If valid_codes is non-None, it is a set containing the party codes which are allowed in this database. If None,
this set is queried from the database.

Note: This can take a relatively long time when adding several hundred results. Should this become a bottle-
neck, there are some optimisation opportunities.

The query module provides some ready-to-use queries which can be run against the database.

psephology.query.constituency_winners()
A query which returns the Constituency, Voting, winning vote count and total vote count for each constituency.
If there was no winner in the constituency, then the Voting, winning vote count and total vote count is None.

The maximum vote count for a constituency is labelled ‘max_vote_count’ and the total vote count is labelled
‘total_vote_count’.

If you intend to get related objects from the Voting, make sure to add an appropriate joinedload() to the options.

E.g.:

q = constituency_winners().options(
joinedload(Voting.party)

)

psephology.query.party_totals()
A query which returns a Party and a constituency count, labelled ‘constituency_count’ which gives the number
of constituencies that party has won.

4.3. Data model 13

psephology Documentation, Release

14 Chapter 4. Programmers’ reference

Python Module Index

p
psephology.app, 11
psephology.autoapp, 11
psephology.io, 11
psephology.model, 12
psephology.query, 13

15

psephology Documentation, Release

16 Python Module Index

Index

A
add_constituency_result_line() (in module psephol-

ogy.model), 13

C
Constituency (class in psephology.model), 12
constituency (psephology.model.Voting attribute), 12
constituency_id (psephology.model.Voting attribute), 12
constituency_winners() (in module psephology.query), 13
count (psephology.model.Voting attribute), 12
create_app() (in module psephology.app), 11
created_at (psephology.model.LogEntry attribute), 12

D
Diagnostic (class in psephology.model), 13

I
id (psephology.model.Constituency attribute), 12
id (psephology.model.LogEntry attribute), 12
id (psephology.model.Party attribute), 12
id (psephology.model.Voting attribute), 12
import_results() (in module psephology.model), 13

L
log() (in module psephology.model), 13
LogEntry (class in psephology.model), 12

M
message (psephology.model.LogEntry attribute), 13

N
name (psephology.model.Constituency attribute), 12
name (psephology.model.Party attribute), 12

P
parse_result_line() (in module psephology.io), 11
Party (class in psephology.model), 12
party (psephology.model.Voting attribute), 12

party_id (psephology.model.Voting attribute), 12
party_totals() (in module psephology.query), 13
psephology.app (module), 11
psephology.autoapp (module), 11
psephology.io (module), 11
psephology.model (module), 12
psephology.query (module), 13

V
Voting (class in psephology.model), 12
votings (psephology.model.Constituency attribute), 12
votings (psephology.model.Party attribute), 12

17

	Getting started
	Docker hub
	Installation from source
	Getting data in
	Building the documentation

	Web UI
	Command line
	Database migration
	Importing results

	Programmers' reference
	Application object creation
	Importing/exporting data
	Data model

	Python Module Index

